Fast Automatic Arc Detection

Gregor Seidel

ZAH / Centre for Astronomy of Heidelberg University

Searching For Strong Lenses in Large Imaging Surveys

Fermilab, June 2007

- Motivation
- Arcfinder method
 - Partitioning into cells
 - Cell transport
 - Cell ellipticities
 - Cell correlation and object generation
 - Graph generation
- Problems / future work
 - Problems: spurious detections
 - Future work
- 4 Results
 - HST / WFPC2

- depends on intensity scaling
 - → hidden faint arcs near bright objects possible
- ambiguous feature classification bad for statistics
- data volume increases rapidly with future surveys
- needs a priori information
 - → selection effects
 - → hides arcs near dark clusters

Fast, automated arc detection is desireable.

Partitioning into cells

distribute cells on

Partitioning into cells

 distribute cells on rectangular grid

- distribute cells on rectangular grid
- shift to local centre-ofbrightness

centre of brightness

$$\bar{\vec{X}} = \frac{\int_A \vec{x} q(I(\vec{x})) d^2 x}{\int_A q(I(\vec{x})) d^2 x}$$

- distribute cells on rectangular grid
- shift to local centre-ofbrightness

centre of brightness

$$\overline{\vec{X}} = \frac{\int_A \vec{x} q(I(\vec{x})) d^2 x}{\int_A q(I(\vec{x})) d^2 x}$$

Outline

- distribute cells on rectangular grid
- shift to local centre-ofbrightness

centre of brightness

$$\overline{\vec{X}} = \frac{\int_A \vec{x} q(I(\vec{x})) d^2 x}{\int_A q(I(\vec{x})) d^2 x}$$

- distribute cells on rectangular grid
- shift to local centre-ofbrightness
- ellipticities

second-moments Qii

$$\frac{\int_A (x_i - \bar{x}_i)(x_j - \bar{x}_j) q(I(\vec{x})) \,\mathrm{d}^2 x}{\int_A q(I(\vec{x})) \,\mathrm{d}^2 x}$$

complex ellipticity χ

$$\chi = \frac{Q_{11} - Q_{22} + 2iQ_{12}}{Q_{11} + Q_{22}}$$

- distribute cells on rectangular grid
- shift to local centre-ofbrightness
- ellipticities ⇒ orientations

complex ellipticity χ

$$\chi = \frac{Q_{11} - Q_{22} + 2iQ_{12}}{Q_{11} + Q_{22}}$$

orientation

$$\chi = \frac{(1-r^2)}{(1+r^2)} \exp(2\mathrm{i}\vartheta)$$

Results

Outline

- distribute cells on rectangular grid
- shift to local centre-ofbrightness
- ellipticities ⇒ orientations

complex ellipticity χ

$$\chi = \frac{Q_{11} - Q_{22} + 2iQ_{12}}{Q_{11} + Q_{22}}$$

orientation

$$\chi = \frac{(1-r^2)}{(1+r^2)} \exp(2i\vartheta)$$

- cell correlations cⁱ
- $c^i > c_{\text{thres}} \Rightarrow \text{add}$

cell correlation

$$c^{i} = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} c^{ij}$$
 $c^{ij} = c^{ij}_{d} c^{ij}_{x}$
 $c^{ij}_{d} = |\vec{e}^{i} \vec{e}^{j}|$
 $c^{ij}_{x} = \max \left(1 - \frac{\Delta_{ij}}{d}, 0\right)$

N : cell neighborhood $\Delta_{ij} = \left| (\vec{x}^j - \vec{x}^i) \times \vec{e}^i_\perp \right|$

d: initial separation

Results

Outline

- cell correlations cⁱ
- $c^i > c_{\text{thres}} \Rightarrow \text{add}$

cell correlation

$$c^i = rac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} c^{ij}$$
 $c^{ij} = c^{ij}_d c^{ij}_x$
 $c^{ij}_d = |\vec{e}^i \vec{e}^j|$
 $c^{ij}_x = \max\left(1 - rac{\Delta_{ij}}{d}, 0\right)$

N : cell neighborhood $\Delta_{ij} = \left| (\vec{x}^j - \vec{x}^i) \times \vec{e}_{\perp}^i \right|$ d: initial separation

Cell correlation and object generation

- cell correlations cⁱ
- $c^i > c_{\text{thres}} \Rightarrow \text{add}$

cell correlation

$$egin{aligned} c^i &= rac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} c^{ij} \ c^{ij} &= c^{ij}_d c^{ij}_x \ c^{ij}_d &= |ec{e}^i \ ec{e}^j| \ c^{ij}_x &= \max \left(1 - rac{\Delta_{ij}}{d}, 0
ight) \end{aligned}$$

N : cell neighborhood $\Delta_{ij} = \left| (\vec{x}^j - \vec{x}^i) \times \vec{e}_{\perp}^i \right|$

d: initial separation

Results

- cell correlations cⁱ
- $c^i > c_{\text{thres}} \Rightarrow \text{add}$ cell i to an object

cell correlation

$$c^{i} = \frac{1}{|\mathcal{N}|} \sum_{j \in \mathcal{N}} c^{ij}$$
 $c^{ij} = c^{ij}_{d} c^{ij}_{x}$
 $c^{ij}_{d} = |\vec{e}^{i} \vec{e}^{j}|$
 $c^{ij}_{x} = \max \left(1 - \frac{\Delta_{ij}}{d}, 0\right)$

 \mathcal{N} : cell neighborhood $\Delta_{ij} = \left| (\vec{x}^j - \vec{x}^i) \times \vec{e}_{\perp}^i \right|$

d: initial separation

Outline

- basic object filter: minimal cellcount and diameter
- generate linear

objects:

unsorted sets of cells

Outline

- basic object filter: minimal cellcount and diameter
- generate linear graphs following arc ridgeline

objects:

unsorted sets of cells

Problems: spurious detections

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation

- point sources

Problems / future work

Problems: spurious detections

Outline

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation scale size 5: 715 objects
- galaxies
- spikes and blooming
- point sources

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation scale size 7: 49 objects
- galaxies
- spikes and blooming
- point sources

Results

Problems: spurious detections

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation scale size 9: 2 objects

- point sources

Problems / future work

Problems: spurious detections

Outline

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation scale size 39: 1 object

- point sources

Results

Outline

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation scale $\mapsto \frac{\text{detections}}{\text{candidates}}$:

- point sources

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation
- galaxies
- spikes and blooming
- point sources

Results

Problems: spurious detections

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation
- galaxies
- spikes and blooming
- point sources

Results

Spurious detections caused by several types of image features:

- Poissonian noise / pixel correlation
- galaxies
- spikes and blooming
- point sources

- Poissonian noise / pixel correlation
- galaxies
- spikes and blooming
- point sources

- Poissonian noise / pixel correlation
- galaxies
- spikes and blooming
- point sources

Future work

Outline

- post processing to remove as many spurious detections as possible
- determination of detection efficiency using simulated images
- application to datasets

Abell2390 by HST WFPC2

Processing time approx. 2.7s on 2.26GHz CPU

Abell2390 by HST WFPC2

Processing time approx. 2.7s on 2.26GHz CPU

HST / WFPC2

Outline

HST WFPC2 image of Abell2218 with several detected arcs. Also several false positives.

Results

HST / WFPC2

Outline

HST WFPC2 image of Abell2218 with several detected arcs. Also several false positives.

Results